
 

 

 

Abstract: This paper introduces a new method of codebook-

based image categorization by building the codebook using 

scored and selected local features in the image. Different from 

traditional clustering-based codebook generation that may 

lead to codeword uncertainty and plausibility, the proposed 

Matching and Consensus (M&C) process follows the 

paradigm of feature selection:  Based on distance metrics, the 

M&C process examines salient local features recurring over 

training images and produces scores that quantify the levels of 

relevance of the features to the image categories. By selecting 

features with the highest scores into the codebook, the method 

is expected to filter out non-representative candidates and 

keeps the most informative codewords for the category. We 

evaluate on five image sets for tasks of binary object 

identification and multi-class biological image classification. 

Experiments show that our method promotes very 

parsimonious codebooks that contain highly representative 

features and deliver a robust classification performance. 

Keywords: Object Recognition, Codebook, SIFT, 

Codewords, Classification and M & C based-scoring 

 

1. Introduction 

 Our aim is to classify an entire image to a known category 

using sparse local features. In the past decade, opposed to 

methods using global descriptors, recognition based on local 

features including bags of local keypoints have been used 

widely in the classification of images or objects in images [3], 

[19]. In current literature, a codebook (sometimes called 

dictionary, vocabulary) is often generated to facilitate image 

representation and the subsequent classification. The most 

popular way to generate codes is to use clusters of the features 

in the training set. Images are then represented as histograms 

of these feature clusters. The basic clustering-based approach, 

however, has some known shortcomings including favouring 

dense regions and being non-discriminative that can lead to 

codeword uncertainty and plausibility [15]. Recent work 

introduced improvements such as assigning different weights 

to the generated codes [1], [15].  While some of them showed 

refined results on standard data sets, the focus has been put on 

weighting the codewords after they were already generated 

using the traditional codebook generation approach and large 

codebooks were used.  

 Differently, we propose a new codebook generation method 

that follows the paradigm of feature selection: we evaluate 

salient local features from training images and only the most 

representative ones are selected and put into the codebook.  

To assist the selection, a scoring mechanism, called M&C-

scoring, is devised to measure the suitability of an individual 

feature as a codeword for a particular image class. 

 Our method can bring some major advantages: 1) The code 

book generated using our method contains scored codes. The 

scores are the natural results of the feature selection process, 

with each score corresponding to the level of relevance of the 

code to a particular class.  By incorporating only the highly 

scored features, the selection process is expected to filter out 

non-representative features and avoid some problems of the 

classic codebook generation using clustering such as the 

inclusion of plausible codes. The scoring process we use is 

based on a combination of distance metrics similar as done in 

image retrieval. It circumvents the computational bottleneck in 

solving complex optimization problems in other related 

methods.  2) Because we work with local image features 

followed by a selection process, our method does not 

explicitly based on shapes and does not require aligning 

images or segmentation of objects. The inputs are entire 

images with both background and foreground.        3) Our 

method uses codebooks that are several magnitudes smaller 

than state-of-the-art methods (a few hundreds versus several 

thousands of codewords) which lead to better computational 

feasibility. 

 To evaluate our method, we test on five image datasets 

including standard natural scene datasets and a multi-class 

biological image set from a newly emerged domain of 

neurobiology.  Tests on these datasets prove the effectiveness 

of our proposed method. Experiments show that our method 

promotes very parsimonious codebooks that contain 

representative features and deliver a robust performance.  

2. Related work   

 Codebook based on bags of keypoints has been used in 

many recent applications of image classification and computer 

vision [1], [19]. In most cases, the codebook is generated 

using K-means clustering with the cluster centers being the 

codewords. Despite its popularity, some shortcomings are also 

well recognized in the community [1], [15]. For example, K-

means does not select the most informative features. Instead, it 
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tends to focus on high density areas of the feature space and 

starves low density ones. The discriminability of the 

codewords is thus compromised.  

 Some most recent work have attempted to overcome these 

problems: Soft assignment to weigh the codewords is 

investigated in [15] in order to address codeword uncertainty 

and plausibility. In [1], codewords were weighed using 

supervised distance metric learning. While they gave some 

refinements of the generated codes, these methods are still 

based on codes that were already obtained using K-means 

clustering. In other words, weighting only happens after the 

codebook was already generated. The traditional codebook 

generation approach brought in many codewords that were not 

contributing to the classification process, which leads to at 

least a waste of codebook entries and possibly a compromise 

of the potential discriminative power of the codebook 

representation.  A different and conceptually more ideal 

alternative would be going back to the codebook generation 

process and avoid bringing in uncertain or plausible 

codewords into the codebook.  Based on this rationale, our 

work in the paper uses a different strategy from previous 

works in that we employed the approach of selecting the local 

features following the feature selection paradigm. The goal is 

to find the most representative features. Those features are 

chosen by a scoring and selection process and put into our 

codebook. 

 The codeword binary weighting is also close to our work in 

terms of motivation. In [17], codewords were merged to 

reduce the size of a large codebook generated using K-means 

clustering.  In [14], a regular lattice is used to discretize the 

feature space. Mean-shift is incorporated into clustering in [6] 

to overcome shortcomings of K-means and a supervised 

feature selection is done for improving speed (instead of 

accuracy).  These methods tend to use a large codebook 

varying from thousands to 1 million code word entries.   

While the above methods are still based on clustering-

generated codewords and the best performances reported are 

obtained by large codebooks, our approach aims to select a 

parsimonious set of code words that can effectively classify 

images.  

   Another related idea was to investigate features repeatedly 

recurring over training images by clustering features across 

different images. Those methods are commonly based on 

segmented training samples or make use of explicit shape-

based model [2], [18].  Some work has also investigated the 

implicit shape model that is represented by large number of 

salient patches [9].  In this paper, local salient points are 

selected as the base of our codes. Scale-Invariant Feature 

Transform (SIFT) [10] is adopted as raw features. By using 

local order-less bag-of-features as the base, segmentation of 

the images is not needed by our method in this paper, nor the 

need of image alignment. 

3. Methodology 

 Our codebook construction and image categorization 

processes can be summarized using Figure 1: 

Figure 1: Diagram of the algorithm flow (codebook generation and 

training process). 

 As the first step, reliable local features need to be extracted 

from images. SIFT features [10] are assumed when explaining 

the algorithm, which are distinctive scale-invariant keypoints 

defined as maxima and minima of Difference of Gaussian 

(DoG) at various scales. However, any local keypoints can be 

used as candidate features for building codebooks using the 

proposed approach.   

 The features for training images then go through the M&C 

scoring process that selects the most suitable features 

(codewords) into the codebook, which is the focus of this 

section. The principle of the M&C scoring process is two-

fold: Matching and Consensus.  Matching is the process of 

finding similar features in different images of the same 

category.  Consensus is the step based on matched features 

that investigates the frequency of recurring features in 

different images of the same category. 

3.1. Matching Process and the M-score  

 The setting of the matching process is similar as in image 

retrieval, with features to be matched in the query image, and 

the remaining images viewed as reference images. The 

outcome of the Matching process is an M-score associated 

with each feature in the query image.  

 The M-score reflects the level of matching of the feature 

with different features in other images of the same category. 

As commonly used in image retrieval, we use distance-based 

metric to examine the level of similarity. Due to the fact that 

there are a large number of features in each image, we employ 

the Ratio of Distance (ROD) to improve robustness.  ROD 

was defined the ratio of the closest distance (between the 

query feature and its best match) divided by the next closest 

distance (between the query feature and its second best match) 

when trying to match a feature with the features in another 

training image. ROD can be used to find a more robustly 

matched object [10], or a matched local feature based on the 

following rationale: a smaller ROD indicates that the best 
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matched feature outperforms other close competitors, so the 

found match is more likely to be real instead of getting 

something from a random clutter.  

 Let Ii be the i-th image and the current query image, Ij being 

the j-th image that is viewed as a reference image.  Say we 

have extracted m feature candidates from Ii, {fi
1
.., fi

x
 … fi

m
}, 

and n features from Ij: {fj
1
.., fj

y
 … fj

n
}, each is a local keypoint 

descriptor.  Then Euclidean distance between two features are 

calculated and noted as D(fi
x
, fj

y
) and are scaled between 0-1.   

For a given feature fi
x
 in Ii, we look for its closest match in Ij, 

and we have     
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where the denominator is the second closest match found in 

the image Ij for fi
x
. 

 We then define the M-score for the query feature fi
x
 with 

respect to its match in Ij as: 
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M-score is justified as following: The smaller the fd, the better 

the match; the smaller the ROD, the better the match.  A match 

that is close (a smaller distance) and outstanding (a much 

better match than other candidates) gets a high M-score, which 

indicates an ideal match. To improve speed, some feature 

pairs with big fds and big rods were discarded early in the 

process without doing the calculation of M-score for fi
x
. Note 

that M-score is calculated when the feature is treated as a 

query feature so it is asymmetric. 

3.2. Consensus Process and the C-score  

 Consensus is the process of determining how representative 

the matched features are for a particular class. 

 Due to intra-class variability, we do not always find matches 

for each feature in all the reference images even when we are 

examining the images labeled as the same category.  For the 

purpose of selecting class-representative features, we look for 

the most frequently recurring features, i.e. the features with 

“consensus”. Only features identified as containing matches in 

other images will be considered qualified to go through the 

consensus process.  For this purpose, a threshold on M-score, 

t, is set on the M-scores to decide if we consider a match is 

found for a given feature x in the query image Ii when 

searching in image Ij. It is to help ensure the validity of 

matches while accommodating certain degree of intra-class 

variance.  The consensus process calculates a C-score for a 

feature candidate x in image Ii as follows: 
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where L is the number of images for the given image category. 

δ(·) is the indicator function that is 1 with positive input and 0 

otherwise. A query feature can have a maximum of (L-1) 

matches so C-score is a number between [0, 1]. Intuitively, it 

can be understood as the consensus weighted by level of 

matching.   Redundancy removal is incorporated in the 

process by keeping only one candidate in a matched set. This 

avoids repetitive features while reducing the computational 

cost.  

 M&C scoring process has associated a C-score with every 

qualified feature candidate.  The generation of codebook is the 

matter of sorting of C-scores, then selecting those that with the 

highest scores. After M&C scoring process, top ranked 

features of each class are selected. They are combined to 

become the codebook for the given image classification 

problem. 

 With a generated cookbook,   an image can be represented 

as a histogram of the codes, with the ith entry of a histogram 

being the proportion of features in the image having label i 

(i.e., the feature is closest to the code i). The task of image 

categorization is to apply the classifier to the represented 

images, either for the purpose of training or testing.  We use 

support vector machine to accomplish the tasks.  For the 

purpose of testing (i.e., categorizing unseen images), only 

steps 1, 4 and 5 in Figure 1 are needed. 

     As a summary, the M&C scoring process provides a 

quantitative measure of the level of suitability of codeword 

candidates, which in turn tends to avoid the codeword 

uncertainty and plausibility that were observed in traditional 

approach of codebook generation using K-means clustering. In 

addition, the score-based feature selection also brings a 

parsimonious codebook which will be further explained in 

experiments.   

4. Experimental Results and Discussions 

 We test on the five datasets. The first set is K150, multi-

class biological images containing 20 confocal microscope 

images of Drosophila (fruitfly) brain. It is a four category 

classification problem and each category represents a genetic 

line that highlights a subset of neurons (named a278, ato, a150 

and a273).  Image dimension is 998*530 with RGB channels.  

The green channel corresponds to the expressed neuron 

bundles and is used for categorization. The rest 4 sets are 

commonly tested object categorization datasets: Graz01 bike 

and people sets [13] and Caltech6 Motorcycle (side) and faces 

(front) sets [4]. They are binary problems with positive images 

containing the objects. Setups in [13] and [4] are used for 

Graz and Caltech6 respectively. Examples are shown in Fig. 2. 

 

    

    
 
Figure 2:  Image examples from K150 (top row, one image example 

per class) and positive images from other datasets. 



 

 

 

4.1. Feature Preprocessing Using Hough 

Transform 

 The proposed M&C scoring works on individual features. In 

our experiments, we use local SIFT keypoint descriptors.  

However, a typical SIFT feature extractor results in hundreds 

to thousands features per image on the datasets to be tested.  

To reduce the computational complexity of feature scoring as 

well as the inference of some background clutters and outliers, 

we apply Hough transform [6] to the raw SIFT features.  A 

raw SIFT feature extractor consists of 2D location, scale and 

orientation, and the keypoint descriptor.  Hough transform is 

done for each image, using orientation, scale and 2D location 

as parameters for voting.   In particular, we use 3 orientation 

bins, 2 scale bins and 16*16 location bins that are organized in 

a hierarchical fashion (each orientation bin has two scale sub-

bins, each scale bin has 16*16 location sub-sub-bins).  All 

bins are distributed equally in parameter space. Only the sub-

sub-bins with sufficient entries of the features are kept, and 

those entries are identified as robust features.   As the result of 

this step, the number of features per images is greatly reduced, 

with the resulting features being more robust candidates than 

raw SIFT features. 

      We need to point out that, while such voting involved in 

Hough transform may also be understood as clustering, the 

purpose and mechanism of Hough transform here is unrelated 

with K-mean clustering used in traditional code-book 

generation.  First of all, Hough transform is done for each 

single image in our experiment for the purpose of removing 

outliers and obtaining robust feature candidates. It is a pre-

processing step that is not concerned with features or codes 

from the entire set. It is the task of M&C scoring that selects 

and builds the codebook. Secondly, voting in the parameter 

space is done with equally distributed bins. This avoids the 

problems of concentrating on dense areas of the image of K-

means clustering algorithm. 

      For all our experiments, each SIFT feature has a keypoint 

descriptor with the dimensionality of 128. We used JavaSift
1
  

and LibSVM
2
 (linear kernel) for SIFT and SVM classifier. We 

implemented our algorithm in Java.  

4.2. Experiments on Multi-class Bioimage 

Dataset 

 As seen from Figure 2, the set of images in K150 are pre-

aligned with minimal background clutter.  Due to its relative 

simplicity compared to natural scene datasets, it serves the 

similar purpose as a synthetic dataset in our project to 

demonstrate the discriminative capability of our proposed 

method.  Meanwhile, it also demonstrates the method’s 

effectiveness on a multi-class image set from biological 

domain.  

                                                           
1
 
http://pacific.mpi-cbg.de/cgi-bin/gitweb.cgi?p=mpicbg.git;a=summary  

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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Figure 3: Examples of features and selected codes.  (a) top: Raw 

SIFT features (blue); bottom:  35 selected codes for the class (white); 

(b) Raw SIFT feature for another image and 35 selected codes for the 

class. (c)  Scores of the codewords in the codebook. Different colors 

indicate codewords for different classes.   

 The raw SIFT features and selected codes are visualized in 

Figure 3.  From Fig. 3 (a)(b), we can see that the clutter 

background information from the original dense raw SIFT 

features were filtered after our codeword selection process. 

The selected features focus on the key structures of the gene 

expression patterns. Figure 3(c) shows scores of the selected 

codewords for the K150 dataset.  In some previous work (e.g. 

[1]), many codewords created from traditional clustering carry 

zero weights after weighted based on their discriminative 

capability because those codewords were not useful for 

classification. Since our selection-based approach only keeps 

highly ranked codewords, it is apparent that we do not have 

such zero weight codewords. Including only useful codewords 

contributes to the parsimony of our codebook size. In fact, we 

only need 35 codes per class which is a total size of 140 

entries to achieve a perfect recognition rate. The parsimony of 

our codebook will be further discussed in Section 4.3. 

Class Image Codebook Representation 
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Figure 4:   Histogram representation of images in K150. Codebook 

size is 35 codes per class. The codewords on the x-axis are numbered 

in the order of a278, ato, a150, and a273 from left to right. For 

example, the first 35 codewords belong to a278 (class 1) and so on.  



 

 

 

 In order to demonstrate the discriminative power of the 

selected code words, Figure 4 gives some examples of the 

histogram representations of images in K150. We can see that 

the codewords of corresponding category for the image show 

higher spikes (higher frequency) than other categories. These 

visually discriminative image representations are strong 

evidence that the selected codewords are class-informative.  

 Because the size of K150 set is small, we conducted Leave-

one-out (LOO) cross validation in our experiment. LOO treats 

one image as the testing image while the remaining images are 

the training set, and repeats the experiment on all images. The 

matching threshold t is set to 0.6.  With as few as 35 codes per 

class, our experiment on the 4-class K150 image set achieves 

100 recognition rate, despite that there are only 5 images per 

class. (The class to which the testing image belongs has 4 

training images.)  The result is not sensitive to codebook size. 

Any codebook size between 30 and 45 yields around 95% 

accuracy (See Fig. 7(a)). This satisfactory result further 

confirms that representations based on our codebook capture 

the category-correlated properties of the image very well, as 

illustrated in Figure 4.   K150 is a simple set compared with 

natural scenes with cluttered background.  Nevertheless, the 

result shows the effectiveness of our model for extracting 

representative and discriminative local features as well as the 

model’s applicability on classifying multi-class images. 

4.3. Experiments on Binary Datasets 

 We then tested our algorithm on four standard object 

classification datasets.  Examples of the Hough-transformed 

SIFT features are visualized in Figure 5. Figure 6 visualizes 

the results of selected codes using M&C scoring process. Note 

that different from k150 set, natural scene image sets are not 

aligned, so it is not straightforward to visualize the locations 

of selected codes from all training images on one particular 

image. In order to show the codes in an intuitive way, we 

picked a small set of images that are loosely aligned, and then 

did the selection on the aligned set.  We used 2 images for 

Graz bike and Graz person, 6 images for Caltech Motorcycle, 

8 for Caltech faces. 

 
Figure 5:  Examples of feature candidates extracted from image set 

(Hough-transformed SIFT features). 

 

  

 

 

  

 

 

(a) (b) (c)  

  

(d) 

Figure 6:  Use aligned images to visualize selected codes.  (a)-(d): 

Graz people, Graz bike, Caltech Motorcycle and Caltech Faces, 

respectively. For each pair of images, one visualizes raw SIFT 

features (before applying Hough transform) and another contains top 

40 selected features. This figure is better viewed in colors. 

 

 It is evident from Fig. 6 that dominant features are chosen as 

the result of our scoring and selection process.  For example, 

in Caltech Motorcycle (c), features around the wheels and the 

engines are kept as the result of selection; while in Caltech 

Faces, selected features focus on the face prominent 

characteristics such as eyes, mouth and chin. The clutter 

background information from the original raw SIFT features 

were filtered out after our codeword selection process. We 

need to note here that since the training sets for the purpose of 

visualization are extremely small, some features that are 

common for the small aligned set would not be common for 

the actual object.  For example, the plug-in on the wall was 

selected for the bike image because it appeared in both 

(aligned) training images. Such selection is less likely when 

more training images are used. 

 We report the classification accuracy in Table 1. Recent 

literature results are also shown as comparison.  Table 2 lists 

the parameters used for the reported results.  

Table 1: Experimental results. 

Dataset Graz Bike Graz 

People 

Caltech 

Motorc

ycle 

Caltec

h 

Faces 

Our 

result 

88.0  81.0 96.2  100 

[13] 86.5  80.8 94.3 100 

[4] - - 92.5 96.3 

[8]  86.3 82.3 - - 

[2] 79.0- 84.0  - - - 

 
 

  



 

 

 

[19] 92.0 88.0 98.5 100 

[1] 83.3-86.7  80.7-84.0 - - 
 

Table 2: Parameter Setting. t: matching threshold; Size: codebook 

size per class. 

Parameter Graz Bike Graz 

People 

Caltech 

Motorcycle 

Caltech 

Faces 

t 0.6 0.52 0.55 0.6 

Size 112 167 424 40 

 

 From Table 1, we can see that, on three out of four datasets, 

our result improved the performance of [13] where SIFT 

feature and traditional codebook generation approach is used. 

On the remaining dataset Caltech 6 faces, our approach 

achieved the same very satisfactory result (100%) as [13] .  

 On Graz Bike, our result is also better than other state-of-

the-art approaches reported in ([4], [8]).  For example, we 

improved the result of [4] which obtained 79% to 84% 

depending on the complexity of the model, with 84% achieved 

by a complex spatial model. It is especially encouraging that 

on the versatile Graz 01 bike dataset, we outperformed the 

very recent result reported in [1] , where codes were first 

generated using traditional approach and then weighted using 

convex quadratic programming. On Caltech set, our results on 

both motorcycle and faces sets are very satisfactory, which are 

better than [4] in addition to surpassing or equal to [13] ’s 

results. Overall, we obtained results that are better than or 

comparable to other recently reported models that we are 

aware of. 

 Our performance is lower than the best performance in [19] 

except that we match their performance on Caltech Faces, 

which is 100%. They made use of two feature detectors 

(Harris-Laplace and Laplace) and two descriptors (SPIN and 

SIFT).   Given the conceptual simplicity of our model (and 

parsimonious codebook size as we will discuss below), we 

believe the experimental results successfully demonstrated the 

effectiveness and the discriminative capability of our model.   

In addition, while SIFT features are adopted in our 

experiment, other choice of local descriptors may be used for 

building a codebook using our M&C scoring process.  

Advanced combinations of descriptors such as those employed 

by [19] are interesting candidates for further exploration. 

4.4. Codebook Size and Computational 

Complexity 

 Compared with the traditional approach of generating 

codebook, our approach has a much better flexibility in 

choosing codebook sizes, because the selection of codes was 

done after the scoring process is completed, while the number 

of codes (clusters) has to be preset in a clustering algorithm.  

This means that we can examine the effect of codebook size 

without major effort.   

We have several interesting observations:  

1. The codebook sizes we employed in our experiments are 

much smaller than those used in literature. For Caltech Faces 

and K150, 40 or less codes per class are needed to obtain the 

best results. For Graz Bike, 112 per class (224 codes total) are 

used. Comparatively, in [1] , the codebook size is 2000 for 

Graz dataset, which is about ten times larger than the size of 

our codebook.  Due to the large codebook size, the authors 

had to put extensive effort to improve the efficiency when 

solving the optimization problem for calculating the codeword 

weights.  Authors of [17] suggested codebooks greater than 

3000 entries. In [14], the codebook size was as large as 5K or 

10K; in [16], codebooks of 20K to 1M entries were 

experimented. 

2. In general, we found that the best results of different data 

sets are obtained in different ranges of codebook sizes, 

possibly related to the complexity of the set. However, within 

that range, the performance of our method is stable.  For 

example, the performances on k150 are all very satisfactory 

around the codebook size of 35 per class. Caltech Faces 

dataset has a very stable performance across almost any 

codebook size we tested round 40 per class. For the Caltech 

motorcycle dataset, while the best performance is 96.2% with 

424 codes per class, codebooks sized between 300 and 700 

per class reported very similar results around 95% with a 

variation of 1 to 2% (Fig. 7 (b)). In addition, the results are 

close with different matching threshold (t) within the range we 

tested ([0.5, 0.6]), although peaks may occur at slightly 

different values (See Table 2).    
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Figure 7:  Trends of performance versus codebook size per class.  

Trend line (red) is fitted using polynomial degree 2. 

3. We observe from trend lines in Figure 7 that when the 

codebook gets too large, the performance tends to drop. This 

observation is especially obvious on k150 and Graz Bike. We 

argue that the performance drop with large codebook is due to 

the inclusion of low ranked codes that are redundant or non-

representative. The observation is consistent with general 

feature selection theory: Once a performance summit 

corresponding to an optimally selected set of features is 

reached, introducing more features will not necessarily 

increase the performance. Note that this observation is not the 

same as prior literature in which most studies tend to use 

larger codebooks. The size was restricted by computational 



 

 

 

complexity but not by accuracy.  For example, in [17], the 

accuracy-versus-size trend is reported to be monotonic, i.e. the 

bigger the size, the better the performance. A codebook size of 

greater than 3000 is thus suggested.  While the optimal 

codebook size is likely to be application-related, we 

hypothesize that the monotonic trends reported in literature 

may indicate that the summit of the codebook’s representative 

power is not yet reached even when the codebook size is 

already big, possibly related to the inclusion of non-

contributing codes in traditional approaches.  

 The overall conclusion from the examination on codebook 

sizes shows that our method promotes parsimonious codebook 

that contains highly representative features and delivers a 

robust performance. 

 The parsimony of codebook size also contributes to 

computational feasibility of our method compared with other 

approaches. In the recent work of weighting the codes after 

they were generated from traditionally clustering approach, it 

typically takes hours for the weight optimization algorithm to 

converge, even after using some efficiency enhancement such 

as Alternating Optimization instead of Global Optimization 

[1]. In our case, the entire code generation process (M&C 

scoring and selection) takes about 30 minutes for the Graz 

datasets on a regular laptop computer (Intel Core 2 Duo CPU 

2GHz, 3GB Memory, JVM 6.1).   The analysis of time shows 

that most time of our algorithm is spent on the nearest 

neighbor matching process. Speed of the codebook generation 

and training process can be further enhanced if some 

improvement on nearest neighbor search is applied such as a 

k-d tree or its variants [12].  The testing process is not affected 

by the nearest neighbor matching and is very fast. 

5. Conclusion 

 We proposed a way of building up codebooks for image 

classification using local feature scoring and selection.  The 

scoring process is fundamentally built on top of a nearest 

neighbor matching by examining the sparse and robust local 

features repeatedly appearing in the training set and selecting 

the representative and recurring features.   The effectiveness 

of such conceptually simple nearest neighbor approach has 

also been examined by related but different application of 

image annotation where the “strawman” approach of using 

distance metric to transfer labels was seen to outperform more 

complex parametric models on standard datasets for image 

annotation [11].   Our method, while with different purpose 

and setting, adds to the agreement of the importance of basic 

distance measure when incorporated into a suitable model. 
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