

Abstract: This paper introduces a new method of codebook-

based image categorization by building the codebook using

scored and selected local features in the image. Different from

traditional clustering-based codebook generation that may

lead to codeword uncertainty and plausibility, the proposed

Matching and Consensus (M&C) process follows the

paradigm of feature selection: Based on distance metrics, the

M&C process examines salient local features recurring over

training images and produces scores that quantify the levels of

relevance of the features to the image categories. By selecting

features with the highest scores into the codebook, the method

is expected to filter out non-representative candidates and

keeps the most informative codewords for the category. We

evaluate on five image sets for tasks of binary object

identification and multi-class biological image classification.

Experiments show that our method promotes very

parsimonious codebooks that contain highly representative

features and deliver a robust classification performance.

Keywords: Object Recognition, Codebook, SIFT,

Codewords, Classification and M & C based-scoring

1. Introduction

 Our aim is to classify an entire image to a known category

using sparse local features. In the past decade, opposed to

methods using global descriptors, recognition based on local

features including bags of local keypoints have been used

widely in the classification of images or objects in images [3],

[19]. In current literature, a codebook (sometimes called

dictionary, vocabulary) is often generated to facilitate image

representation and the subsequent classification. The most

popular way to generate codes is to use clusters of the features

in the training set. Images are then represented as histograms

of these feature clusters. The basic clustering-based approach,

however, has some known shortcomings including favouring

dense regions and being non-discriminative that can lead to

codeword uncertainty and plausibility [15]. Recent work

introduced improvements such as assigning different weights

to the generated codes [1], [15]. While some of them showed

refined results on standard data sets, the focus has been put on

weighting the codewords after they were already generated

using the traditional codebook generation approach and large

codebooks were used.

 Differently, we propose a new codebook generation method

that follows the paradigm of feature selection: we evaluate

salient local features from training images and only the most

representative ones are selected and put into the codebook.

To assist the selection, a scoring mechanism, called M&C-

scoring, is devised to measure the suitability of an individual

feature as a codeword for a particular image class.

 Our method can bring some major advantages: 1) The code

book generated using our method contains scored codes. The

scores are the natural results of the feature selection process,

with each score corresponding to the level of relevance of the

code to a particular class. By incorporating only the highly

scored features, the selection process is expected to filter out

non-representative features and avoid some problems of the

classic codebook generation using clustering such as the

inclusion of plausible codes. The scoring process we use is

based on a combination of distance metrics similar as done in

image retrieval. It circumvents the computational bottleneck in

solving complex optimization problems in other related

methods. 2) Because we work with local image features

followed by a selection process, our method does not

explicitly based on shapes and does not require aligning

images or segmentation of objects. The inputs are entire

images with both background and foreground. 3) Our

method uses codebooks that are several magnitudes smaller

than state-of-the-art methods (a few hundreds versus several

thousands of codewords) which lead to better computational

feasibility.

 To evaluate our method, we test on five image datasets

including standard natural scene datasets and a multi-class

biological image set from a newly emerged domain of

neurobiology. Tests on these datasets prove the effectiveness

of our proposed method. Experiments show that our method

promotes very parsimonious codebooks that contain

representative features and deliver a robust performance.

2. Related work

 Codebook based on bags of keypoints has been used in

many recent applications of image classification and computer

vision [1], [19]. In most cases, the codebook is generated

using K-means clustering with the cluster centers being the

codewords. Despite its popularity, some shortcomings are also

well recognized in the community [1], [15]. For example, K-

means does not select the most informative features. Instead, it

Image Categorization using Codebooks Built from

Scored and Selected Local Features

Bala S. Divakaruni and Jie Zhou

Department of Computer Science, Northern Illinois University DeKalb IL USA 60115

tends to focus on high density areas of the feature space and

starves low density ones. The discriminability of the

codewords is thus compromised.

 Some most recent work have attempted to overcome these

problems: Soft assignment to weigh the codewords is

investigated in [15] in order to address codeword uncertainty

and plausibility. In [1], codewords were weighed using

supervised distance metric learning. While they gave some

refinements of the generated codes, these methods are still

based on codes that were already obtained using K-means

clustering. In other words, weighting only happens after the

codebook was already generated. The traditional codebook

generation approach brought in many codewords that were not

contributing to the classification process, which leads to at

least a waste of codebook entries and possibly a compromise

of the potential discriminative power of the codebook

representation. A different and conceptually more ideal

alternative would be going back to the codebook generation

process and avoid bringing in uncertain or plausible

codewords into the codebook. Based on this rationale, our

work in the paper uses a different strategy from previous

works in that we employed the approach of selecting the local

features following the feature selection paradigm. The goal is

to find the most representative features. Those features are

chosen by a scoring and selection process and put into our

codebook.

 The codeword binary weighting is also close to our work in

terms of motivation. In [17], codewords were merged to

reduce the size of a large codebook generated using K-means

clustering. In [14], a regular lattice is used to discretize the

feature space. Mean-shift is incorporated into clustering in [6]

to overcome shortcomings of K-means and a supervised

feature selection is done for improving speed (instead of

accuracy). These methods tend to use a large codebook

varying from thousands to 1 million code word entries.

While the above methods are still based on clustering-

generated codewords and the best performances reported are

obtained by large codebooks, our approach aims to select a

parsimonious set of code words that can effectively classify

images.

 Another related idea was to investigate features repeatedly

recurring over training images by clustering features across

different images. Those methods are commonly based on

segmented training samples or make use of explicit shape-

based model [2], [18]. Some work has also investigated the

implicit shape model that is represented by large number of

salient patches [9]. In this paper, local salient points are

selected as the base of our codes. Scale-Invariant Feature

Transform (SIFT) [10] is adopted as raw features. By using

local order-less bag-of-features as the base, segmentation of

the images is not needed by our method in this paper, nor the

need of image alignment.

3. Methodology

 Our codebook construction and image categorization

processes can be summarized using Figure 1:

Figure 1: Diagram of the algorithm flow (codebook generation and

training process).

 As the first step, reliable local features need to be extracted

from images. SIFT features [10] are assumed when explaining

the algorithm, which are distinctive scale-invariant keypoints

defined as maxima and minima of Difference of Gaussian

(DoG) at various scales. However, any local keypoints can be

used as candidate features for building codebooks using the

proposed approach.

 The features for training images then go through the M&C

scoring process that selects the most suitable features

(codewords) into the codebook, which is the focus of this

section. The principle of the M&C scoring process is two-

fold: Matching and Consensus. Matching is the process of

finding similar features in different images of the same

category. Consensus is the step based on matched features

that investigates the frequency of recurring features in

different images of the same category.

3.1. Matching Process and the M-score

 The setting of the matching process is similar as in image

retrieval, with features to be matched in the query image, and

the remaining images viewed as reference images. The

outcome of the Matching process is an M-score associated

with each feature in the query image.

 The M-score reflects the level of matching of the feature

with different features in other images of the same category.

As commonly used in image retrieval, we use distance-based

metric to examine the level of similarity. Due to the fact that

there are a large number of features in each image, we employ

the Ratio of Distance (ROD) to improve robustness. ROD

was defined the ratio of the closest distance (between the

query feature and its best match) divided by the next closest

distance (between the query feature and its second best match)

when trying to match a feature with the features in another

training image. ROD can be used to find a more robustly

matched object [10], or a matched local feature based on the

following rationale: a smaller ROD indicates that the best

M&C Scoring
Extract-

ing

Reliable

Features

M-score

Calculation

C-score

Calculation

Score Sorting,

Code Selection and

Codebook

Image Repre-

sentation Classifier

1

3 4
5

2

matched feature outperforms other close competitors, so the

found match is more likely to be real instead of getting

something from a random clutter.

 Let Ii be the i-th image and the current query image, Ij being

the j-th image that is viewed as a reference image. Say we

have extracted m feature candidates from Ii, {fi
1
.., fi

x
 … fi

m
},

and n features from Ij: {fj
1
.., fj

y
 … fj

n
}, each is a local keypoint

descriptor. Then Euclidean distance between two features are

calculated and noted as D(fi
x
, fj

y
) and are scaled between 0-1.

For a given feature fi
x
 in Ii, we look for its closest match in Ij,

and we have

{ }},...1{),,(min)(nyffDffd
y

j

x

i

x

ij ∈= (1)

The Ratio of Distance is calculated as below:

{ })(),(&},...1{),,(min

)(
)(

x

ij

y

i

x

i

y

j

x

i

x

ijx

ij
ffdffDnyffD

ffd
frod

>∈
=

 (2)

where the denominator is the second closest match found in

the image Ij for fi
x
.

 We then define the M-score for the query feature fi
x
 with

respect to its match in Ij as:

)(*)(1)(x

ij

x

ij

x

ij frodffdfM −= (3)

M-score is justified as following: The smaller the fd, the better

the match; the smaller the ROD, the better the match. A match

that is close (a smaller distance) and outstanding (a much

better match than other candidates) gets a high M-score, which

indicates an ideal match. To improve speed, some feature

pairs with big fds and big rods were discarded early in the

process without doing the calculation of M-score for fi
x
. Note

that M-score is calculated when the feature is treated as a

query feature so it is asymmetric.

3.2. Consensus Process and the C-score

 Consensus is the process of determining how representative

the matched features are for a particular class.

 Due to intra-class variability, we do not always find matches

for each feature in all the reference images even when we are

examining the images labeled as the same category. For the

purpose of selecting class-representative features, we look for

the most frequently recurring features, i.e. the features with

“consensus”. Only features identified as containing matches in

other images will be considered qualified to go through the

consensus process. For this purpose, a threshold on M-score,

t, is set on the M-scores to decide if we consider a match is

found for a given feature x in the query image Ii when

searching in image Ij. It is to help ensure the validity of

matches while accommodating certain degree of intra-class

variance. The consensus process calculates a C-score for a

feature candidate x in image Ii as follows:

 ∑
+−=

−
−

=
Liij

x

ij

x

ij

x

i fMtfM
L

fC
,,,1,1,,,1

)())((
1

1
)(δ (4)

where L is the number of images for the given image category.

δ(·) is the indicator function that is 1 with positive input and 0

otherwise. A query feature can have a maximum of (L-1)

matches so C-score is a number between [0, 1]. Intuitively, it

can be understood as the consensus weighted by level of

matching. Redundancy removal is incorporated in the

process by keeping only one candidate in a matched set. This

avoids repetitive features while reducing the computational

cost.

 M&C scoring process has associated a C-score with every

qualified feature candidate. The generation of codebook is the

matter of sorting of C-scores, then selecting those that with the

highest scores. After M&C scoring process, top ranked

features of each class are selected. They are combined to

become the codebook for the given image classification

problem.

 With a generated cookbook, an image can be represented

as a histogram of the codes, with the ith entry of a histogram

being the proportion of features in the image having label i

(i.e., the feature is closest to the code i). The task of image

categorization is to apply the classifier to the represented

images, either for the purpose of training or testing. We use

support vector machine to accomplish the tasks. For the

purpose of testing (i.e., categorizing unseen images), only

steps 1, 4 and 5 in Figure 1 are needed.

 As a summary, the M&C scoring process provides a

quantitative measure of the level of suitability of codeword

candidates, which in turn tends to avoid the codeword

uncertainty and plausibility that were observed in traditional

approach of codebook generation using K-means clustering. In

addition, the score-based feature selection also brings a

parsimonious codebook which will be further explained in

experiments.

4. Experimental Results and Discussions

 We test on the five datasets. The first set is K150, multi-

class biological images containing 20 confocal microscope

images of Drosophila (fruitfly) brain. It is a four category

classification problem and each category represents a genetic

line that highlights a subset of neurons (named a278, ato, a150

and a273). Image dimension is 998*530 with RGB channels.

The green channel corresponds to the expressed neuron

bundles and is used for categorization. The rest 4 sets are

commonly tested object categorization datasets: Graz01 bike

and people sets [13] and Caltech6 Motorcycle (side) and faces

(front) sets [4]. They are binary problems with positive images

containing the objects. Setups in [13] and [4] are used for

Graz and Caltech6 respectively. Examples are shown in Fig. 2.

Figure 2: Image examples from K150 (top row, one image example

per class) and positive images from other datasets.

4.1. Feature Preprocessing Using Hough

Transform

 The proposed M&C scoring works on individual features. In

our experiments, we use local SIFT keypoint descriptors.

However, a typical SIFT feature extractor results in hundreds

to thousands features per image on the datasets to be tested.

To reduce the computational complexity of feature scoring as

well as the inference of some background clutters and outliers,

we apply Hough transform [6] to the raw SIFT features. A

raw SIFT feature extractor consists of 2D location, scale and

orientation, and the keypoint descriptor. Hough transform is

done for each image, using orientation, scale and 2D location

as parameters for voting. In particular, we use 3 orientation

bins, 2 scale bins and 16*16 location bins that are organized in

a hierarchical fashion (each orientation bin has two scale sub-

bins, each scale bin has 16*16 location sub-sub-bins). All

bins are distributed equally in parameter space. Only the sub-

sub-bins with sufficient entries of the features are kept, and

those entries are identified as robust features. As the result of

this step, the number of features per images is greatly reduced,

with the resulting features being more robust candidates than

raw SIFT features.

 We need to point out that, while such voting involved in

Hough transform may also be understood as clustering, the

purpose and mechanism of Hough transform here is unrelated

with K-mean clustering used in traditional code-book

generation. First of all, Hough transform is done for each

single image in our experiment for the purpose of removing

outliers and obtaining robust feature candidates. It is a pre-

processing step that is not concerned with features or codes

from the entire set. It is the task of M&C scoring that selects

and builds the codebook. Secondly, voting in the parameter

space is done with equally distributed bins. This avoids the

problems of concentrating on dense areas of the image of K-

means clustering algorithm.

 For all our experiments, each SIFT feature has a keypoint

descriptor with the dimensionality of 128. We used JavaSift
1

and LibSVM
2
 (linear kernel) for SIFT and SVM classifier. We

implemented our algorithm in Java.

4.2. Experiments on Multi-class Bioimage

Dataset

 As seen from Figure 2, the set of images in K150 are pre-

aligned with minimal background clutter. Due to its relative

simplicity compared to natural scene datasets, it serves the

similar purpose as a synthetic dataset in our project to

demonstrate the discriminative capability of our proposed

method. Meanwhile, it also demonstrates the method’s

effectiveness on a multi-class image set from biological

domain.

1

http://pacific.mpi-cbg.de/cgi-bin/gitweb.cgi?p=mpicbg.git;a=summary

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

(a) (b)

(c)

Figure 3: Examples of features and selected codes. (a) top: Raw

SIFT features (blue); bottom: 35 selected codes for the class (white);

(b) Raw SIFT feature for another image and 35 selected codes for the

class. (c) Scores of the codewords in the codebook. Different colors

indicate codewords for different classes.

 The raw SIFT features and selected codes are visualized in

Figure 3. From Fig. 3 (a)(b), we can see that the clutter

background information from the original dense raw SIFT

features were filtered after our codeword selection process.

The selected features focus on the key structures of the gene

expression patterns. Figure 3(c) shows scores of the selected

codewords for the K150 dataset. In some previous work (e.g.

[1]), many codewords created from traditional clustering carry

zero weights after weighted based on their discriminative

capability because those codewords were not useful for

classification. Since our selection-based approach only keeps

highly ranked codewords, it is apparent that we do not have

such zero weight codewords. Including only useful codewords

contributes to the parsimony of our codebook size. In fact, we

only need 35 codes per class which is a total size of 140

entries to achieve a perfect recognition rate. The parsimony of

our codebook will be further discussed in Section 4.3.

Class Image Codebook Representation

1

(a278)

2

 (ato)

3

(a150)

Figure 4: Histogram representation of images in K150. Codebook

size is 35 codes per class. The codewords on the x-axis are numbered

in the order of a278, ato, a150, and a273 from left to right. For

example, the first 35 codewords belong to a278 (class 1) and so on.

 In order to demonstrate the discriminative power of the

selected code words, Figure 4 gives some examples of the

histogram representations of images in K150. We can see that

the codewords of corresponding category for the image show

higher spikes (higher frequency) than other categories. These

visually discriminative image representations are strong

evidence that the selected codewords are class-informative.

 Because the size of K150 set is small, we conducted Leave-

one-out (LOO) cross validation in our experiment. LOO treats

one image as the testing image while the remaining images are

the training set, and repeats the experiment on all images. The

matching threshold t is set to 0.6. With as few as 35 codes per

class, our experiment on the 4-class K150 image set achieves

100 recognition rate, despite that there are only 5 images per

class. (The class to which the testing image belongs has 4

training images.) The result is not sensitive to codebook size.

Any codebook size between 30 and 45 yields around 95%

accuracy (See Fig. 7(a)). This satisfactory result further

confirms that representations based on our codebook capture

the category-correlated properties of the image very well, as

illustrated in Figure 4. K150 is a simple set compared with

natural scenes with cluttered background. Nevertheless, the

result shows the effectiveness of our model for extracting

representative and discriminative local features as well as the

model’s applicability on classifying multi-class images.

4.3. Experiments on Binary Datasets

 We then tested our algorithm on four standard object

classification datasets. Examples of the Hough-transformed

SIFT features are visualized in Figure 5. Figure 6 visualizes

the results of selected codes using M&C scoring process. Note

that different from k150 set, natural scene image sets are not

aligned, so it is not straightforward to visualize the locations

of selected codes from all training images on one particular

image. In order to show the codes in an intuitive way, we

picked a small set of images that are loosely aligned, and then

did the selection on the aligned set. We used 2 images for

Graz bike and Graz person, 6 images for Caltech Motorcycle,

8 for Caltech faces.

Figure 5: Examples of feature candidates extracted from image set

(Hough-transformed SIFT features).

(a) (b) (c)

(d)

Figure 6: Use aligned images to visualize selected codes. (a)-(d):

Graz people, Graz bike, Caltech Motorcycle and Caltech Faces,

respectively. For each pair of images, one visualizes raw SIFT

features (before applying Hough transform) and another contains top

40 selected features. This figure is better viewed in colors.

 It is evident from Fig. 6 that dominant features are chosen as

the result of our scoring and selection process. For example,

in Caltech Motorcycle (c), features around the wheels and the

engines are kept as the result of selection; while in Caltech

Faces, selected features focus on the face prominent

characteristics such as eyes, mouth and chin. The clutter

background information from the original raw SIFT features

were filtered out after our codeword selection process. We

need to note here that since the training sets for the purpose of

visualization are extremely small, some features that are

common for the small aligned set would not be common for

the actual object. For example, the plug-in on the wall was

selected for the bike image because it appeared in both

(aligned) training images. Such selection is less likely when

more training images are used.

 We report the classification accuracy in Table 1. Recent

literature results are also shown as comparison. Table 2 lists

the parameters used for the reported results.

Table 1: Experimental results.

Dataset Graz Bike Graz

People

Caltech

Motorc

ycle

Caltec

h

Faces

Our

result

88.0 81.0 96.2 100

[13] 86.5 80.8 94.3 100

[4] - - 92.5 96.3

[8] 86.3 82.3 - -

[2] 79.0- 84.0 - - -

[19] 92.0 88.0 98.5 100

[1] 83.3-86.7 80.7-84.0 - -

Table 2: Parameter Setting. t: matching threshold; Size: codebook

size per class.

Parameter Graz Bike Graz

People

Caltech

Motorcycle

Caltech

Faces

t 0.6 0.52 0.55 0.6

Size 112 167 424 40

 From Table 1, we can see that, on three out of four datasets,

our result improved the performance of [13] where SIFT

feature and traditional codebook generation approach is used.

On the remaining dataset Caltech 6 faces, our approach

achieved the same very satisfactory result (100%) as [13] .

 On Graz Bike, our result is also better than other state-of-

the-art approaches reported in ([4], [8]). For example, we

improved the result of [4] which obtained 79% to 84%

depending on the complexity of the model, with 84% achieved

by a complex spatial model. It is especially encouraging that

on the versatile Graz 01 bike dataset, we outperformed the

very recent result reported in [1] , where codes were first

generated using traditional approach and then weighted using

convex quadratic programming. On Caltech set, our results on

both motorcycle and faces sets are very satisfactory, which are

better than [4] in addition to surpassing or equal to [13] ’s

results. Overall, we obtained results that are better than or

comparable to other recently reported models that we are

aware of.

 Our performance is lower than the best performance in [19]

except that we match their performance on Caltech Faces,

which is 100%. They made use of two feature detectors

(Harris-Laplace and Laplace) and two descriptors (SPIN and

SIFT). Given the conceptual simplicity of our model (and

parsimonious codebook size as we will discuss below), we

believe the experimental results successfully demonstrated the

effectiveness and the discriminative capability of our model.

In addition, while SIFT features are adopted in our

experiment, other choice of local descriptors may be used for

building a codebook using our M&C scoring process.

Advanced combinations of descriptors such as those employed

by [19] are interesting candidates for further exploration.

4.4. Codebook Size and Computational

Complexity

 Compared with the traditional approach of generating

codebook, our approach has a much better flexibility in

choosing codebook sizes, because the selection of codes was

done after the scoring process is completed, while the number

of codes (clusters) has to be preset in a clustering algorithm.

This means that we can examine the effect of codebook size

without major effort.

We have several interesting observations:

1. The codebook sizes we employed in our experiments are

much smaller than those used in literature. For Caltech Faces

and K150, 40 or less codes per class are needed to obtain the

best results. For Graz Bike, 112 per class (224 codes total) are

used. Comparatively, in [1] , the codebook size is 2000 for

Graz dataset, which is about ten times larger than the size of

our codebook. Due to the large codebook size, the authors

had to put extensive effort to improve the efficiency when

solving the optimization problem for calculating the codeword

weights. Authors of [17] suggested codebooks greater than

3000 entries. In [14], the codebook size was as large as 5K or

10K; in [16], codebooks of 20K to 1M entries were

experimented.

2. In general, we found that the best results of different data

sets are obtained in different ranges of codebook sizes,

possibly related to the complexity of the set. However, within

that range, the performance of our method is stable. For

example, the performances on k150 are all very satisfactory

around the codebook size of 35 per class. Caltech Faces

dataset has a very stable performance across almost any

codebook size we tested round 40 per class. For the Caltech

motorcycle dataset, while the best performance is 96.2% with

424 codes per class, codebooks sized between 300 and 700

per class reported very similar results around 95% with a

variation of 1 to 2% (Fig. 7 (b)). In addition, the results are

close with different matching threshold (t) within the range we

tested ([0.5, 0.6]), although peaks may occur at slightly

different values (See Table 2).

0

20

40

60

80

100

0 10 20 30 40 50 60 70

codebook size

A
c

c
u

ra
c
y

(a) K150

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500 600 700 800

codebook size

a
c

c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

50 90 130 170 210 250 290 330 370

codebook size

a
c
c

u
ra

c
y

(b) Caltech Motorcycle (c) Graz Bike

Figure 7: Trends of performance versus codebook size per class.

Trend line (red) is fitted using polynomial degree 2.

3. We observe from trend lines in Figure 7 that when the

codebook gets too large, the performance tends to drop. This

observation is especially obvious on k150 and Graz Bike. We

argue that the performance drop with large codebook is due to

the inclusion of low ranked codes that are redundant or non-

representative. The observation is consistent with general

feature selection theory: Once a performance summit

corresponding to an optimally selected set of features is

reached, introducing more features will not necessarily

increase the performance. Note that this observation is not the

same as prior literature in which most studies tend to use

larger codebooks. The size was restricted by computational

complexity but not by accuracy. For example, in [17], the

accuracy-versus-size trend is reported to be monotonic, i.e. the

bigger the size, the better the performance. A codebook size of

greater than 3000 is thus suggested. While the optimal

codebook size is likely to be application-related, we

hypothesize that the monotonic trends reported in literature

may indicate that the summit of the codebook’s representative

power is not yet reached even when the codebook size is

already big, possibly related to the inclusion of non-

contributing codes in traditional approaches.

 The overall conclusion from the examination on codebook

sizes shows that our method promotes parsimonious codebook

that contains highly representative features and delivers a

robust performance.

 The parsimony of codebook size also contributes to

computational feasibility of our method compared with other

approaches. In the recent work of weighting the codes after

they were generated from traditionally clustering approach, it

typically takes hours for the weight optimization algorithm to

converge, even after using some efficiency enhancement such

as Alternating Optimization instead of Global Optimization

[1]. In our case, the entire code generation process (M&C

scoring and selection) takes about 30 minutes for the Graz

datasets on a regular laptop computer (Intel Core 2 Duo CPU

2GHz, 3GB Memory, JVM 6.1). The analysis of time shows

that most time of our algorithm is spent on the nearest

neighbor matching process. Speed of the codebook generation

and training process can be further enhanced if some

improvement on nearest neighbor search is applied such as a

k-d tree or its variants [12]. The testing process is not affected

by the nearest neighbor matching and is very fast.

5. Conclusion

 We proposed a way of building up codebooks for image

classification using local feature scoring and selection. The

scoring process is fundamentally built on top of a nearest

neighbor matching by examining the sparse and robust local

features repeatedly appearing in the training set and selecting

the representative and recurring features. The effectiveness

of such conceptually simple nearest neighbor approach has

also been examined by related but different application of

image annotation where the “strawman” approach of using

distance metric to transfer labels was seen to outperform more

complex parametric models on standard datasets for image

annotation [11]. Our method, while with different purpose

and setting, adds to the agreement of the importance of basic

distance measure when incorporated into a suitable model.

6. Acknowledgements

 We thank Julie Simpson at Howard Hughes Medical

Institute for providing the bioimage datasets.

7. References

[1] H. Cai, F. Yan, K. Mikolajczyk, Learning Weights for

Codebook in Image Classification and Retrieval, CVPR

2010.

[2] D. Crandall and D. Huttenlocher, Weakly supervised

learning of part-based spatial models for visual

recognition, in Proc. ECCV, pp. 16–29, 2006.

[3] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C.

Bray. Visual categorization with bags of keypoints. In

Workshop of ECCV, pages 1-22, 2004.

[4] R. Fergus, P. Perona, and A. Zisserman, Object class

recognition by unsupervised scale-invariant learning.

CVPR, pp. 264–271. 2003

[5] V. Ferrari, F. Jurie, C. Schmid. From images to shape

models for object detection, IJCV, 87(3):284-303, 2009

[6] E. Grimson. Object recognition by computer: the role of

geometric constrains. The MIT Press: Cambridge, MA

1990

[7] F. Jurie and B. Trigger, Creating efficient codebooks for

visual recognition, ICCV, pages 604-610, 2005.

[8] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing

natural scene categories, CVPR, pages 2169–2178, 2006.

[9] B. Leibe, A. Leonardis, and B. Schiele, Combined object

categorization and segmentation with an implicit shape

model, in Proc. ECCV Workshop on Statistical Learning

in Computer Vision, 2004.

[10] D. G. Lowe, Distinctive image features from scale-

invariant keypoints, IJCV, 60, 2 (2004), pp. 91-110.

[11] A. Makadia, V. Pavlovic, and S. Kumar, A new Base line

for image annotation, ECCV 2008.

[12] M Muja and D G. Lowe, Fast approximate nearest

neighbors with automatic algorithm configuration, Intl

Conf on Computer Vision Theory and Applications,

2009.

[13] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic

object recognition with boosting. IEEE Trans on PAMI,

28(3):416–431, 2006.

[14] T. Tuytelaars and C. Schmid. Vector quantizing feature

space with a regular lattice. In ICCV pages 1-8 2007.

[15] J. C. van Gemert, J. M. Geusebroek, C. J. Veenman, and

A. W. M. Smeulders. Kernel codebooks for scene

categorization, In ECCV, 2008.

[16] J. Philbin, O. Chum, M. Israd, J. Sivic, and A. Zisserman.

Object retrieval with large vocabularies and fast spatial

matching. CVPR. 0:1-8, 2007.

[17] J. Winn, A. Criminisi and T. Minka, Object

Categorization by Learned Universal Visual Dictionary,

ICCV 2005

[18] J. Winn and N. Jojic, LOCUS: Learning Object Classes

with Unsupervised Segmentation, ICCV, 756 – 763,

2005.

[19] J. Zhang, M Marszlek, S Lazebnik, C. Schmid. Local

features and kernels for classification of texture and

object categories: A comprehensive study, IJCV

73(2):213– 238. 2007.

